
1

Sparse Distributed Memory for Sparse

Rewards

Alex Van de Kleut

Department of Neuroscience

Brock University

St. Catharines, Canada

Email: av15fj@brocku.ca

Sheridan Houghten (Supervisor)

Department of Computer Science

Brock University

St. Catharines, Canada

Brian Ross (Co-supervisor)

Department of Computer Science

Brock University

St. Catharines, Canada

2

Abstract

Reinforcement learning is a field of machine learning that involves teaching an agent

to maximize rewards from the environment by choosing the best actions. While modern

reinforcement learning methods perform very well in environments with dense rewards,

they tend to struggle in environments with sparse rewards. This thesis uses Montezuma’s

Revenge, a 2D puzzle game for the Atari 2600, as a testbed for reinforcement learning

in a sparse reward setting. We compare the technique of Random Network Distillation,

a method for generating intrinsic reward based on prediction error that achieves state-

of-the-art performance in Montezuma’s Revenge, to Sparse Distributed Memory, a novel

technique that uses recall fidelity as a method for detecting novelty. We find that using

Sparse Distributed Memory improves performance over a baseline reinforcement learning

agent, but does not achieve state-of-the-art performance.

ACKNOWLEDGEMENTS

This thesis was completed with the assistance of many researchers and faculty

who took the time to assist me with my research. I would like to thank Dr. Sheridan

Houghten and Dr. Brian Ross of Brock University’s Computer Science department for

their continued support with this thesis. I would also like to thank Dr. Pentti Kanerva,

who is responsible for the development of Sparse Distributed Memory, for answering

questions and providing me with literature material that was not available online. I

would like to thank Dr. James Hughes of St. Francis Xavier University who provided

an abundance of research ideas and guided me in the research process. FInally, I

would like to thank Yuri Burda, the corresponding author for the paper on Random

Network Distillation, how clarified for me some implementation details of the paper

and allowed me to replicate their results.

CONTENTS

I Background 5

I-A Markov Processes . 5

I-B Markov Reward Processes . 6

I-C Value Function . 7

3

I-D Markov Decision Processes . 7

I-E Policies . 8

I-F Action-Value Function . 9

I-G Optimal Policy . 9

II Q-Learning 10

II-A SARSA . 10

II-B Q-learning . 11

II-C Deep Q-Learning . 11

II-D Target Networks . 15

II-E Exploration-Exploitation . 16

II-E1 Epsilon-Greedy . 16

II-F Experience Replay . 17

II-G Double Q-Learning . 18

III Policy Gradient 18

III-A REINFORCE . 21

III-B Actor-Critic (AC) . 21

III-C Advantage Actor-Critic (A2C) 23

III-D Generalized Advantage Estimation (GAE) 25

III-E Proximal Policy Optimization (PPO) 28

III-F Deep Deterministic Policy Gradients (DDPG) 31

III-G Kinds of Policies . 32

IV Intrinsic Motivation 33

IV-A Sparse Rewards . 34

IV-B ICM . 35

IV-C RND . 38

V Sparse Distributed Memory 39

V-A RAM . 40

V-B SDM . 40

V-C Autoassociative Memory . 45

4

V-D Intrinsic Motivation . 45

VI Methods 48

VI-A Environments . 48

VI-B RND as a comparison . 48

VI-B1 Policy . 48

VI-B2 Reward Scale . 49

VI-B3 Observation Scale 49

VI-B4 Exploration-Exploitation 50

VI-B5 Combining Episodic and Non-Episodic Rewards . . 50

VI-B6 Batched Environments 51

VI-C Sparse Distributed Memory . 52

VI-C1 SDM Hyperparameters 54

VII Results 55

VII-A Reporting Results . 56

VII-A1 Performance . 56

VII-A2 Training Curves . 57

VII-B Varying SDM Parameters . 57

VIII Discussion 59

VIII-A Limitations . 59

VIII-B Reasons for Performance . 61

VIII-C Future Work . 63

IX Neuroscience 64

X Conclusion 67

References 68

Appendix A: Hyperparameters 69

5

I. BACKGROUND

The field of reinforcement learning in computer science is historically rooted in the

field of operant conditioning from psychology. Operant conditioning is a technique

to used modify behaviour through the use of reward and punishment: behaviour

should increase in frequency when associated the addition of a positive stimulus or

the removal of a negative stimulus, and should decrease in frequency when associ-

ated with the removal of a positive stimulus or the addition of a negative stimulus

[Thorndike, 1901].

From this, reinforcement learning researchers have gleaned a guiding principle

that informs every development in the field: the reward hypothesis. The reward

hypothesis states that every action of a rational agent can be thought of as seeking

to maximize some cumulative scalar reward signal [Sutton,]. The reward hypothesis

is foundational to reinforcement learning, since it gives us a basic framework for

designing agents that behave rationally.

Reinforcement learning relies heavily on its theoretical foundations. Problems in

reinforcement learning are framed as Markov Decision Processes (MDPs). MDPs

are extensions of stochastic models known as Markov Processes.

A. Markov Processes

A Markov Process is, formally, a tuple 〈S,P〉 where S is a set of states and

P : S2 → [0, 1] is a function describing the probability of transitioning from state s

to state s′:

P(s, s′) = P
[
s′
∣∣s] (1)

Markov processes are used to model stochastic sequences of states s1, s2, . . . , sT

satisfying the Markov Property:

P
[
st+1

∣∣st] = P
[
st+1

∣∣s1, s2, . . . , st] (2)

that is, the probability of transition from state St to state St+1 is independent of

previous transitions.

6

B. Markov Reward Processes

A Markov Reward Process is an extension of a Markov Process that allows us

to associate rewards with states. Formally, it is a tuple 〈S,P ,R〉 that allows us to

associate with each state transition 〈st, st+1〉 some reward

R(st, st+1) = E
[
rt
∣∣st, st+1

]
(3)

which is often simplified to being R(st) the reward of being in a particular state st.

Consider a trajectory τ of transitions

τ = 〈st, st+1, st+2, . . . , sT 〉

visited in a Markov reward process, associated with a sequence of rewards

〈rt, rt+1, rt+2, . . . , rT 〉

Then according to the reward hypothesis, we should be interested in trajectories that

maximize the return Rt:

Rt = rt + rt+1 + rt+2 + · · ·+ rT (4)

=
T∑
k=t

rk

When T is finite, we say that the trajectory has a finite time horizon and that the

environment is episodic (happens in ‘episodes’).

For infinite time horizons, we cannot guarantee that Rt converges. As a result,

we might consider discounting rewards exponentially over time in order to guarantee

convergence. This line of reasoning leads us to the discounted return Gt:

Gt = rt + γrt+1 + γ2rt+2 + . . . (5)

=
∞∑
k=t

γk−trk

where γ is a discount factor between 0 and 1 (often close to 1).

We sometimes refer to both the discounted and undiscounted return as just ‘return’

for brevity, and write Gt where for some episodic environments it may be more

7

appropriate to use Rt. In fact, it should not be hard to see that Rt is just Gt with

rt = 0 for t > T and γ = 1.

C. Value Function

We can use the expected value of Gt to determine the value of being a certain

state s:

V (st) = E
[
Gt

∣∣st] (6)

We can decompose V (st) into two parts: the immediate reward rt and the discounted

value of being in the next state st+1:

V (st) = E
[
Gt

∣∣st]
= E

[
rt + γrt+1 + · · ·+ γ2rt+2

∣∣st]
= E

[
rt + γ(rt+1 + γrt+2 + . . .)

∣∣st]
= E

[
rt + γGt+1

∣∣st]
= E

[
rt + γV (st+1)

∣∣st]
(7)

The last form of V (st) in (7) is known as the Bellman Equation.

D. Markov Decision Processes

A Markov Decision Process (MDP) is an extension of a Markov Reward Process

that allows state transitions to be conditional upon some action. Formally, it is a

tuple 〈S,A,P ,R〉 where A is a set of action available to an agent in a state s. We

reformulate (3) as follows:

R(st, at) = E
[
rt
∣∣st, at] (8)

This is the model we will use to describe problems in reinforcement learning. In

this case, state transitions now include the action taken:

〈st, at, st+1〉

8

and that trajectories τ are now of the form

〈st, at, st+1, at+1, 〉

We must also update P to be the probability of transitioning to state st+1 given that

the current state is st and the current action is at.

P(st, at, st+1) = P
[
st+1

∣∣st, at] (9)

Whereas in an MRP the probability of generating trajectories is dependant upon only

the dynamics of the underlying Markov provess, in an MDP trajectories also depend

on the actions of an agent.

E. Policies

Our goal is to design an agent capable of behaving rationally, that is, capable of

maximizing the return. In the context of MDPs, this means having a strategy for

choosing an action at given the state st. We call this the policy of the agent.

There are two kinds of of policies: deterministic policies are policies that directly

map states to actions, and are usually denoted µ:

µ : S → A (10)

where we have at = µ(st).

The second kind of policies are stochastic policies that form a probability distri-

bution over possible actions that can be taken, and are usually denoted π:

π : S ×A → [0, 1] (11)

where we have at ∼ π(·
∣∣st).

In general we can refer to a policy as π since we can regard µ is a special case

where the probability distribution collapses around a single action.

Given a policy π, an agent can now choose actions at each state to shape the

sequences of states that it visits. We thus have a new formulation of the value function

9

(12):

V π(st) = Eπ
[
Gt

∣∣st] (12)

which can be thought of as the expected value of starting in state st and choosing

actions in subsequent states according to the policy π.

F. Action-Value Function

We can extend our redefined function (13) to consider the expected return of taking

action at in state st and from there following the policy π at each subsequent state.

Qπ(st, at) = Eπ
[
Gt

∣∣st, at] (13)

Whereas V π(st) associates a ‘goodness’ with a state st according to a policy π,

Qπ(st, at) describes the quality of taking an action at in a state st.

Just as in (7), we can decompose Qπ(st, at) as follows:

Qπ(st, at) = Eπ
[
rt + γQπ(st+1, at+1)

∣∣st, at] (14)

Since the value function is the expected reward for choosing an action at starting in

state st according to the policy π, we can see that

V π(st) = Eat∼π
[
Qπ(st, at)

∣∣st] (15)

G. Optimal Policy

Under the paradigm of the Q function, what does it mean for an agent to have an

optimal policy? An optimal policy π∗ should satisfy the optimal value function:

Q∗(st, at) = max
π

Eπ
[
rt + γQ∗(st+1, at+1)

∣∣st, at] (16)

that is, it should choose actions that maximize the expected return over a trajectory.

Then from this we can derive a greedy optimal policy:

π∗(at
∣∣st) =


1, at = arg maxat Q

∗(st, at)

0, otherwise
(17)

10

II. Q-LEARNING

A. SARSA

Some environments give the agent a discrete action space A. These kinds of

environments are often simpler to learn than cases where the environment may permit

a continuous action space. We often run into discrete action space environments in

games, where at each turn there is a small number of moves to make, or video games,

where at each time step you can only choose combinations of button presses.

‘Learning’ an optimal policy requires correctly learning Qπ. However, the formula-

tion in (16) is recursive. Solving it in this form is impractical for many reasons; in the

real world it is not possible to test every action since the environment would change

as a result (i.e., a state transition would occur). As a result, we need to develop an

approach that can handle the environment changing as a result of our actions.

One method is to use the SARSA algorithm, which is an abbreviation of

〈st, at, rt, st+1, at+1〉

a sequence of experiences that can be used to learn Qπ. The agent does not know Qπ

but can learn to approximate it with a function Q. Consider the following sequence

of events:

1) The agent is in a state st, and chooses some action at according to a policy π.

2) The agent transitions from state st to state st+1, recieving a reward rt.

3) The agent is in a state st+1 and chooses some action at+1 according to a policy

π.

At this point, the agent has a better estimate of Qπ(st, at), namely

rt + γQ(st+1, at+1) (18)

This emulates what is inside the expectation in (13). We refer to this estimate as the

time-difference target or TD target. Then our estimate of Qπ(st, at) can be updated

according to some learning rate α as follows:

Q(st, at)← (1− α)Q(st, at) + α(rt + γQ(st+1, at+1)) (19)

11

It is important to note here that at time t and also t+1 we use the policy π to select

actions at and at+1. If we make the assumption that an agent uses the Q function to

guide π at each step, then we are both updating our policy and using it to guide our

decisions at the same time. This is called on-policy learning.

B. Q-learning

Q-learning is essentially SARSA with the policy π being exactly the kind of greedy

policy described in (17). With this in mind, we can reformulate the sequence of events

considered in the SARSA algorithm as follows:

1) The agent is in a state st and for each possible action at calculates Q(st, at).

The agent chooses the action at that maximizes Q.

2) The agent transitions from state st to state st+1 recieving a reward rt.

3) The agent is in a state st+1 and for each possible action at+1 calculates Q(st+1, at+1).

The agent chooses the action at+1 that maximizes Q.

Then we simply modify the update rule for SARSA in (19):

Q(st, at)← (1− α)Q(st, at) + α(rt + γmax
at+1

Q(st+1, at+1)) (20)

C. Deep Q-Learning

Implicit in the above formulation of Q-learning is the ‘storage’ of Q(st, at) for

state-action pairs (st, at). While a tabular approach to Q-learning may be feasible

for environments with very small state spaces and action spaces (i.e., a table of size

|S| × |A|), there are problems for large state or action spaces, or potentially infinite

state spaces.1

One approch to solving this is to use a function approximator for Q that takes

state-action pairs (st, at) and produces a scalar prediction for what Q(st, at) should

be. An extremely popular approach is to use a deep neural network to approximate

Q. Briefly, a deep neural network is a differentiable computational graph made up of

layers of processing nodes called neurons. Each neuron sums weighted inputs from

1Note that the action space must still be discrete in (deep) Q-learning.

12

nodes in the previous layer and performs some kind of nonlinear activation function

on the summed weighted input. It provides this output to neurons in the next layer.

This most basic formulation is called a multilayer perceptron, but more advanced

connectivity patterns and neuron forms exist. See figure 1 for a schematic.

Fig. 1. A schematic representation of a deep neural network.

One big advantage to using a neural network is the ability of the neural network

to output multiple values. Instead of the neural network taking state-action pairs and

output scalar values, they can instead take states as input and produce vectors of Q

values corresponding to the quality of each action in that state. This is a much more

efficient approach. We call this network the deep Q-network (DQN). See figure 2

for a schematic.

Neural networks need to be differentiable so that we can use the optimization

technique of gradient descent to train it. Typically a neural network is specified

abstractly as a set of parameters θ that determine the output of the network given the

input. Then we represent Q as a function parametrized by θ: Qθ. We define a loss

L(θ) for the network that we want to minimize. Gradient descent works by taking the

gradient of L with respect to θ and taking a small step in the direction opposite the

gradient (‘down’ the gradient, i.e., gradient descent). This is the basic formulation;

several modern extensions of gradient descent exist that improve training of neural

networks, the details of which we will not cover in this thesis.

Consider the Q-learning update rule (20). When Q(st, at) is exactly equal to the

TD target, there is no update. Noticing this, we might consider the loss of our neural

network to be 0 when the value for Q(st, at) is equal to rt + γmaxat+1 Q(st+1, at+1).

13

Fig. 2. A Q-network. The state is a 4-dimensional vector and there are 3 discrete actions available. The network
takes a state st as a parameter and for each action a predicts the quality Qθ(st, at) of that action.

This is exactly the framework of a regression problem. We can then define the loss

to be the squared error between the two:

L(θ) = Eat∼π[(yi −Qθ(st, at))
2] (21)

where the TD target is yi:

yi = Eat+1∼π

[
rt + γmax

at+1

Qθ(st+1, at+1)
∣∣st, at] (22)

Training the neural network would consist of the following sequence of events:

1) The agent in state st calculates Qθ(st, at) using network parameters θ for each

possible at. Using the greedy policy, it selects the action at that maximizes

Qθ(st, at).

2) As a result of choosing this action, the state transitions to state st+1. The agent

recieves a reward rt as a result.

3) The agent is now in state st+1 calculates Qθ(st+1, at+1) using network param-

eters θ for each possible at+1. The maximal value of Qθ(st+1, at+1) is chosen.

4) The network is trained to minimize the loss, with Qθ(st, at) being the predic-

14

tion of the network, and with yi being the reward for transitioning and the

discounted maximal Q value for state st+1 determined in step 4 (i.e., rt +

γmaxat+1 Qθ(st+1, at+1)).

See figure 3 for a diagrammatic representation.

To perform any variation of gradient descent requires defining the gradient of the

loss function. In this case, we can just apply the chain rule to (21). If we treat the

TD target yi as a constant (which is appropriate), we get a rather simple expression

for the gradient:

∇θL(θ) = Ea∼π [2(yi −Qθ(s, a))∇θQθ(s, a)] (23)

and to update the the network parameters, we simply use stochastic gradient descent:

θ ← θ +
1

2
α∇θL(θ) (24)

where α is the learning rate.

Fig. 3. A diagram showing how Q-learning gathers data for training.

15

D. Target Networks

One may have realized that this network θ is trying to predict it own output. This

kind of learning is unstable, meaning performance can quickly deteriorate (to even

worse than random [Mnih et al., 2013]). One reason for this is that the neural network

is differentiable. When we modify the parameters θ while training the network, we

actually change the predictions for similar states to that which we just trained on.

Research has shown that training can be stabilized by using two networks: θ and θtarg.

Instead of one set of parameters, we have two (i.e., we have two neural networks).

We call the second network (θtarg) the target network, and it uses the parameters

from the Q-network that synchronize with the current Q-network every nθ timesteps.

We define two policies:

1) π: The behaviour policy that uses the Q-network (Qθ(st, at)) and is updated

every time step.

2) πtarg: The target policy that uses the target network (Qθtarg(st+1, at+1)) and is

updated to match π (i.e., θtarg is updated to match θ) every nθ timesteps.

Since the kind of predictions made by the target network θtarg are static for nθ

timesteps, training becomes stabilized.

As a result, we get a new formulation of (21):

L(θ) = Ea∼π
[
(yi −Qθ(st, at))

2
]

(25)

where the TD target is yi:

yi = Eat+1∼πtarg

[
rt + γmax

at+1

Qθtarg(st+1, at+1)
∣∣st, at] (26)

See figure 4 for a diagrammatic representation.

There is a slightly alternate version to using target networks, where rather than

updating the target network all at once, we use polyak averaging:

θtarg ← ρθtarg + (1− ρ)θ (27)

where ρ is a constant between 0 and 1 (often close to 1).

16

Fig. 4. A diagram showing how Q-learning gathers data for training using the target network and behaviour
network.

E. Exploration-Exploitation

One major problem in RL is determining the optimal balance between exploration

and exploitation. Exploitation refers to an agents tendency to choose actions that it

thinks are best for it at any given time. This is the case with our greedy behaviour

policy π. This comes at the cost of potentially not exploring new states that the agent

has yet to visit. For the neural network to well approximate the Q function, it needs

to have exposure to as much of S as possible.

1) Epsilon-Greedy: One strategy is to select a constant 0 ≤ ε ≤ 1 that chooses an

action either randomly or according to π by comparing a random number p ∼ U(0, 1)

to ε; if p < ε we choose a random action. Otherwise, we choose an action according

to π.

There are various strategies one can use for ε-greedy policies. One example is to

choose some initial value εi and some final value εf , and a number of iterations nε over

which εi decays into εf so that initially exploration is high and exploitation is low;

as the network learns, it becomes more deterministic as it learns to exploit known

rewards and techniques. Another strategy for episodic environments is to choose ε

17

empirically:

ε =
1√
T + 1

where T is the time horizon of the episode.

F. Experience Replay

When we update our Q-network, we do it after every state transition (i.e., we do

it online). Recall that we are using gradient descent to train the network parameters

θi. One problem with training online is that we get a biased, high variance estimate

for the gradient. A better approach would involve taking the mean gradient estimate

of the loss over many pairs of Qθ(s, a) and TD targets. Furthermore, by training the

network only on the most recent state transition, we are only making the network

better at predicting the most recent TD target. This can actually undo some of the

progress made training the network on earlier transitions. This problem is known as

catastrophic forgetting.

We can solve the above problems by including an experience replay buffer D

that stores transitions

〈st, at, rt, st+1〉

Note that we do not need to store at+1 since our network will choose at+1 based on

π anyways.

We then train the network by taking batches of transitions from D. For each

transition, we use the Q-network to predict Qθ(st, at) and to consequently choose

an action at ∼ π, and we use the target network to predict Qθtarg(st+1, at+1) and to

consequently choose an action at+1 ∼ πtarg. Over all transitions in the batch, we

calculate the gradient of the loss L(θ). We take the average of these gradients and

update the network parameters. [Mnih et al., 2013] showed that stability in learning

is essential to good performance, and using an experience replay buffer helps with

this.

18

G. Double Q-Learning

In the target network formulation of deep Q-learning, we use the target network to

compute Qθtarg(st+1, at+1). We use πtarg to greedily choose an action at+1 as a result

of this calculation. Thus, computing the quality of an action and choosing an action

is tightly coupled. In double Q-learning, we decouple these.

We choose an action at+1 based on the current behaviour policy π (that is, we

calculate Qθ(st+1, at+1) and select greedily from the results). We then use this at+1

to calculate yi (that is, we use at+1 to calculate Qθtarg(st+1, at+1)). As a result, we can

rewrite our TD target yi:

yi = Eat+1∼πtarg

[
rt + γQθtarg(st+1, arg max

at+1

Qθ(st+1, at+1))
∣∣st, at] (28)

See figure 5 for a diagrammatic representation.

Fig. 5. A diagram showing how Q-learning gathers data for training using double Q-learning.

III. POLICY GRADIENT

In Q-learning, we have a policy π that is simply a greedy (or ε-greedy) strategy.

While this can be effective in problems with small (discrete) action spaces, we may

19

face problems with large (or continuous) action spaces. We can circumvent this

by instead directly trying to model π. We can parametrize the policy using some

parameters θ to produce a distribution over actions:

πθ(a
∣∣s) = P

[
at
∣∣st; θ] (29)

Modelling the policy directly has an additional advantage over the greedy policy

from Q-learning, which is that it can learn a stochastic policy. We have the option

of picking an action stochastically over the distribution π.

Consider some objective function J that we want to maximize using our policy

(and consequently J is a function of θ). An obvious choice would be the return given

the policy πθ. There are three possible objectives:

• For episodic environments (i.e., with a finite time horizon T) we just consider

the value of the starting state s0.

J1(θ) = V πθ(s0) = Eπθ [G0] (30)

• For continuing environments, we can consider the average value over all states:

JavV (θ) =
∑
s∈S

dπθ(s)V πθ(s) (31)

where dπθ(s) is the distribution of states over the policy πθ.

• For continuing environments, we can also consider the average reward per time

step:

JavR(θ) =
∑
s∈S

dπθ(s)
∑
a∈A

πθ(s, a)R(s, a) (32)

Consider an MDP with a single step (i.e., T = 1). Then the objective function is

just the expected reward for that single step. Evaluating this expectation yields the

formula for average reward per timestep for one timestep, where the distribution of

states over the policy is just the distribution of the MDP:

J(θ) = Eπθ [r] (33)

=
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)R(s, a)

20

How should we update the policy parameters θ so as to maximize this reward? A

simple approach would be to use gradient ascent, where we compute the gradient of

the objective function with respect to our policy parameters θ and add this gradient

vector to our parameters. Over time, then, we learn parameters θ that maximize J(θ)

(unlike in Q-learning, where we use gradient descent to minimize L(θ)).

θ ← θ + α∇θJ(θ) (34)

where for the single-step MDP the gradient is:

∇θJ(θ) =
∑
s∈S

d(s)
∑
a∈A

∇θπθ(s, a)R(s, a) (35)

This form almost looks like our original expectation in (33) except that it is missing

the probability distribution over actions. We can reintroduce it by multiplying and

dividing by πθ(s, a) (with the exception that the policy must not be 0 which is satisfied

almost everywhere).

∇θJ(θ) =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)
∇θπθ(s, a)

πθ(s, a)
R(s, a) (36)

= Eπθ

[
∇θπθ(s, a)

πθ(s, a)
r

]
(37)

This expression for the gradient is actually extremely intuitive. The top is a vector

in parameter space that would move θ in the direction that increases the probability

of choosing action a in state s. However, this could lead to a feedback loop where

we just continually take the most likely action, so to counteract this, we divide by

the probability of taking this action. Finally, we scale by the reward; the higher the

reward, we more we want to take this action. We can actually use the following

identity to make the expresson even simpler:

∇θπθ(s, a)

πθ(s, a)
= ∇θ log πθ(s, a) (38)

It turns out that for multi-step MDPs, we can actually just replace the reward r for a

single time step with the long-term value Qπθ(s, a), since we are taking the expectation

over all states and actions according to our policy πθ. Combining this with (38) yields

21

the policy gradient theorem:

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qπθ(s, a)] (39)

A. REINFORCE

Since the policy gradient theorem gives the gradient of the objective function as

an expectation, we can sample this expectation to get an estimate for the gradient.

Consider an episodic environment that terminates after T time steps. At the end, we

have a return Gt for each time step. We can use the return for each time step as an

unbiased estimate for Qπθ(s, a). For each timestep t we can just update the policy

parameters according to a modified version of (34):

θ ← θ + α∇θ log πθ(st, at)Gt (40)

This algorithm is known as the REINFORCE algorithm. The strategy of sampling

complete episodes to gather information before making updates is called Monte Carlo

policy gradient control, where ‘Monte Carlo’ means taking samples to approximate

an expectation.

B. Actor-Critic (AC)

REINFORCE has a few problems:

1) Monte Carlo approximation is slow and subject to high variance.

2) We need to know the final return before making any updates.

3) It relies on episodic environments; what about continuing ones (i.e., T =∞)?

One approch would be to estimate Qπθ using a function approximator parametrized

by parameters φ. Then at each time step, we perform gradient ascent using not the

true return but a biased estimate Qφ(s, a).

Qφ(s, a) ≈ Qπθ(s, a) (41)

If we carefully choose our function approximator φ then we can actually assure that

the replacing Qπθ(s, a) with Qφ(s, a) yields the exact same gradient as in the policy

gradient theorem. We need to satisfy two conditions:

22

1) The function approximator must be compatible to the policy

∇φQφ(s, a) = ∇θ log πθ(s, a) (42)

2) The parameters must minimize the mean-squared error between Qπθ(s, a) and

Qφ(s, a):

ε = Eπθ
[
(Qφ(s, a)−Qπθ(s, a))2

]
(43)

Then we can prove that the gradient remains unchanged. Since φ is chosen so as to

minimize ε, we can state the following:

∇φε = 0

Eπθ [(Qφ(s, a)−Qπθ(s, a))∇φQφ(s, a)] = 0 by the chain rule

Eπθ [(Qφ(s, a)−Qπθ(s, a))∇θ log πθ(s, a)] = 0 by compatability

Eπθ [Qφ(s, a)∇θ log πθ(s, a)] = Eπθ [Qπθ(s, a)∇θ log πθ(s, a)]

(44)

Therefore we can substitute Qφ(s, a) in for Qπθ(s, a) in the policy gradient theorem:

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qφ(s, a)] (45)

We maintain two sets of parameters. One, θ, is used to drive the policy πθ and is

used to select the actions of the agent. The second, φ, is only used to estimate the

quality of the actions taken by the policy in different states (and consequently suggests

to the policy how to change in order to improve, as we can see by the Qφ(s, a) term

in the policy gradient). The function approximator for the policy is called the actor

and the function approximator for the quality is called the critic.

We have two sets of parameters to manage and optimize now. The first, θ, can be

trained using gradient ascent and the policy gradient theorem in (45), which can be

done online (i.e., every time step). The second, φ, can be trained exactly as in earlier

sections using, for example, deep Q learning.

Actor-critic models are more data efficient than methods like REINFORCE because

they require less training examples in general to reach optimal performance.

23

C. Advantage Actor-Critic (A2C)

One issue with actor-critic models is that the quality Qφ(s, a) can have high

variance. One way to avoid this might be to consider subtracting some baseline b(s)

from the quality. We can show that making this change doesn’t impact the expectation

of the policy gradient theorem:

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)(Qφ(s, a)− b(s))]

= Eπθ [∇θ log πθ(s, a)Qφ(s, a)]−

Eπθ [∇θ log πθ(s, a)b(s)]

Eπθ [∇θ log πθ(s, a)b(s)] =
∑
s∈S

dπθ(s)
∑
a∈A

∇θπθ(s, a)b(s)

=
∑
s∈S

dπθ(s)b(s)∇θ

∑
a∈A

πθ(s, a)

=
∑
s∈S

dπθ(s)b(s)∇θ1

= 0

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qφ(s, a)]− 0

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)(Qφ(s, a)− b(s))] = Eπθ [∇θ log πθ(s, a)Qφ(s, a)]

(46)

So the expectation does not change even when including a baseline. Of couse we are

now faced with an obvious question: what function should we use for the baseline?

Consider the difference between Qπθ(s, a) and V πθ(s). Qπθ(s, a) tells us the ex-

pected return of taking an action a in state s, then following the policy πθ. On the

other hand, V πθ(s) tells us the expected return of following the policy πθ starting in

state s. Then there is some advantage to taking a specific action a in state s compared

to just following the policy πθ in state s, which we call the advantage Aπθ(s, a).

Qπθ(s, a) = V πθ(s) + Aπθ(s, a) (47)

Aπθ(s, a) = Qπθ(s, a)− V πθ(s) (48)

The advantage is exactly the form described in (46). Thus, if we can estimate Aπθ(s, a),

24

we have a lower variance estimate for the gradient of the objective function.

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Aπθ(s, a)] (49)

We are now faced with the challenge of estimating the advantage Aπθ(s, a). We

might consider using an approach similar to actor-critic, where insted of one set of

parameters φ to predict Qπθ(s, a) we have two sets of parameters φ, φ′ where one

predicts Qπθ(s, a) and the other predicts V πθ(s). It turns out that we can estimate the

advantage using a single set of parameters.

Let us denote the TD target error for the true value function V πθ(st) as δπθt .

δπθt = r + γV πθ(st+1)− V πθ(st) (50)

It turns out that this is an unbiased estimate of the advantage function!

Eπθ
[
δπθt
∣∣st, at] = Eπθ

[
r + γV πθ(st+1)

∣∣st, at]− V πθ(s)

= Qπθ(s, a)− V πθ(s) by the definition of Qπθ(s, a)

= Aπθ(s, a)

(51)

Then we can directly substitute Aπθ(s, a) for δπθt in (49):

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)δπθt] (52)

One way we can interpret this is that δπθt measures our error in how good we think

the world is. If it is positive, then we were doing better than expected and should

increase the probability of these actions in the future. If it is negative, then we were

doing wore than expected and should decrease the probability of these actions in the

future.

What this means is that in practice, we actually only need one set of parameters

for predicting V πθ(s), which we can denote Vφ(s), in order to calculate the TD error,

which we can denote δt(φ).

This is really beneficial and practical for implementations of actor-critic, since we

can train the critic by minimizing δt(φ)2 (the squared error, as in (21)) using gradient

descent, and we can reuse δt(φ) when training our actor using the policy gradient

25

theorem and gradient ascent.

D. Generalized Advantage Estimation (GAE)

So far, we have seen several forms of the policy gradient equation. They are all of

the following form:

g = Eπθ

[
∞∑
t=0

Ψt∇θ log πθ(at
∣∣st)] (53)

where g is notational shorthand for the gradient of the objective function ∇θJ(θ),

and where Ψt is one of any of the following:

Rt =
∞∑
k=t

rk

Gt =
∞∑
k=t

γk−trk

Qπθ(st, at)

Aπθ(st, at) = Qπθ(st, at)− V πθ(st)

δπθt = rt + V πθ(st+1)− V πθ(st)

(54)

We consider the undiscounted return versions of the value, action-value, and advan-

tage:

V πθ(st) = Eπθ
[
Rt

∣∣st]
Qπθ(st, at) = Eπθ

[
Rt

∣∣st, at]
Aπθ(st, at) = Qπθ(st, at)− V πθ(st)

And specify γ as a parameter:

V πθ,γ(st) = Eπθ
[
Gt

∣∣st]
Qπθ,γ(st, at) = Eπθ

[
Gt

∣∣st, at]
Aπθ,γ(st, at) = Qπθ,γ(st, at)− V πθγ(st)

Then we can use the advantage to define a policy gradient with γ as a parameter.

gγ = Eπθ

[
∞∑
t=0

Aπθ,γ∇θ log πθ(at
∣∣st)] (55)

Generalized advantage estimation (GAE) is an approach that deals with trying to

balance between bias and variance for estimating the advantage Aπθ,γ , which we will

26

call Â. In order to estimate the gradient in (55), we take samples from the environment.

ĝγ =
1

N

N∑
n=1

∞∑
t=0

Ânt∇θ log πθ(at
∣∣st) (56)

Recall that that the TD-difference δπθt is an unbiased estimate of Aπθ,γ . Let us

denote Â(k)
t to be the sum of k terms of δπθt .

Â
(1)
t = δπθt = −Vφ(st) + rt + γVφ(st+1)

Â
(2)
t = δπθt + γδπθt+1 = −Vφ(st) + rt + γrt+1 + γ2Vφ(st+2)

Â
(3)
t = δπθt + γδπθt+1 + γ2δπθt+2 = −Vφ(st) + rt + γrt+1 + γ2rt+2γ

3Vφ(st+3)

...
...

Â
(k)
t =

k∑
i=0

γiδπθt+i = −Vφ(st) + rt + γrt+1 + · · ·+ γk−1rt+k−1 + γkVφ(st+k)

where Â
(k)
t is essentially a k-term estimate of the return, minus a baseline term

−V πθ(st). In general, the bias becomes smaller as k →∞ since γkV (st+k) becomes

more heavily discounted as k increases. Furthermore, as previously established, sub-

tracting a baseline does not impact the expectation. Taking the limit k →∞ yields

Â
(∞)
t =

∞∑
i=0

γiδπθt+i = −Vφ(st) +
∞∑
i=0

γirt+i (57)

which ends up just being the empirical returns minus a the value-function baseline.

The generalized advantage estimator GAE(γ, λ) is just an exponentially-weighted

27

average of these k-step estimators:

Â
GAE(γ,λ)
t = (1− λ)

(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)
= (1− λ)

(
δπθt + λ(δπθt + γδπθt+1) + λ2(δπθt + γδπθt+1 + γ2δπθt+2) + . . .

)
expanding and refactoring we get

= (1− λ)(δπθt (1 + λ+ λ2 + . . .) + γδπθt+1(λ+ λ2 + λ3 + . . .)+

γ2δπθt+2(λ
2 + λ3 + λ4 + . . .) + . . .)

which is an infinite geometric sum, yielding

= (1− λ)

(
δπθt

(
1

1− λ

)
+ γδπθt+1

(
λ

1− λ

)
+ γ2δπθt+2

(
λ2

1− λ

))
=
∞∑
i=0

(γλ)iδπθt+i

[Schulman et al., 2015] cites two special cases of GAE, which are achieved by setting

γ = 0 and γ = 1.

GAE(γ, 0) : Ât = δπθt = rt + γVφ(st+1)− Vφ(st)

GAE(γ, 1) : Ât =
∞∑
i=0

γiδπθt+i =
∞∑
i=0

γirt+i − Vφ(st)

Both γ and λ are parameters that contribute to the bias-variance tradeoff. γ deter-

mines the scale of the value function V πθ,γ which does not depend on λ. Regardless of

the accuracy of Vφ, taking γ < 1 introduces a bias into the policy gradient estimate. On

the other hand, taking λ < 1 introduces bias only when Vφ is inaccurate. Empirically,

[Schulman et al., 2015] find that the best value of λ is much lower than the best value

of γ.

Using GAE, we can construct a biased estimator of gλ:

gγ ≈ E

[
∞∑
t=0

∇θ log πθ(at
∣∣st)ÂGAE(γ,λ)

t

]
= E

[
∞∑
t=0

∇θ log πθ(at
∣∣st) ∞∑

i=0

(γλ)iδπθt+i

]
(58)

where the equality holds when λ = 1.

28

E. Proximal Policy Optimization (PPO)

We next cover a relatively simple algorithm that performs at least as well as those

listed above: proximal policy optimization (PPO) [Schulman et al., 2017].

In PPO, our objective function is different than our expected return (or other variants

mentioned above). Instead, we begin by considering a surrogate objective, first de-

scribed in a method called conservative policy iteration (CPI) [Schulman et al., 2017]:

JCPI(θ) = Eπθ

[
πθ(a, s)

πθold(s, a)
Aπθ(s, a)

]
(59)

In this case, we have some old policy parameters θold and some new policy parameters

θ. We calculate the ratio of the policies ρ(θ): 2

ρ(θ) =
πθ(a, s)

πθold(s, a)
(60)

Which simplifies our notation a bit. Then our surrogate objective can be written as

JCPI(θ) = Eπθ [ρ(θ)Aπθ(s, a)] (61)

The intuition here is that if we update our policy parameters, we want that update to

make sense.

• If our advantage is positive and ρ(θ) is positive (i.e., we just made our action

more likely) then we want to increase the likelihood of making this kind of

update again in the future (i.e., updating from θold to θ was a good idea).

• If our advantage is negative and ρ(θ) is positive, then we want to decrease our

likelihood of making this kind of update again in the future (i.e., updating from

θold to θ was a bad idea).

• If our advantage is positive and ρ(θ) is negative, then we want to decrease our

likeligood of making this kind of update again in the future.

• If our advantage is negative and ρ(θ) is negative, then we want to increase the

likelihood of this kind of update again in the future.

The only problem with this surrogate objective is that it is unconstrained and could

2The authors of the original paper use r(θ) but we will use ρ to avoid confusion.

29

lead to destructive updates to the policy. While PPO in general is an entire family

of algorithms proposed in [Schulman et al., 2017], here we consider the clipped

surrogate objective function:

JCLIP(θ) = Eπθ [min (ρ(θ), clip(ρ(θ), 1− ε, 1 + ε))Aπθ(s, a)] (62)

Here, clip(ρ(θ), 1 − ε, 1 + ε) clips ρ(θ) into the range [1 − ε, 1 + ε]. By taking the

minimum between ρ(θ) and the clipped version, we ensure that any updates to our

policy are conservative and that JCLIP(θ) is a lower bound for the unclipped objective.

To elaborate on this, consider two cases:

• Aπθ(s, a) is positive. Consider what happens as ρ(θ) changes from being below

1 to being above 1 (figure 6). Once ρ(θ) increases beyond 1 + ε, there is no

Fig. 6. How the objective changes as ρ(θ) changes when Aπθ (s, a) > 0. Adapted from [Schulman et al., 2017].
The red dot indicates ρ(θ) = 1.

further increase in objective and the gradient is clipped to zero.

In this case, the action was good (Aπθ(a, s) > 0).

– If the action became more probable (ρ(θ) > 1) then we allow the gradient to

improve the policy only a little bit, since too large of an optimistic gradient

update can be destructive to the policy. Clipping helps control the magnitude

of gradient updates.

– If the action became less probable (ρ(θ) < 1) then we place no restriction

on improving the policy (i.e., we are free to roll back the adjustment we

30

just made). We only freely update the policy using the full gradient when

we performed worse than expected.

• Aπθ(s, a) is negative. Consider what happens as ρ(θ) changes from being above

1 to being below 1 (figure 7) Once ρ(θ) decreases beyond 1 − ε, there is no

Fig. 7. How the objective changes as ρ(θ) changes when Aπθ (s, a) < 0. Adapted from [Schulman et al., 2017].
The red dot indicates ρ(θ) = 1.

further increase in objective and the gradient is clipped to zero.

In this case, the action was bad (Aπθ(a, s) < 0).

– If the action became less probable (ρ(θ) < 1) then we allow the gradient to

improve the policy only a little bit, since too large of an optimistic gradient

update can be destructive to the policy. Clipping helps control the magnitude

of gradient updates.

– If the action became more probable (ρ(θ) > 1) then we place no restriction

on improving the policy.

In methods like actor-critic, it may be tempting to update the policy repeatedly

on the same set of data to try to encourage quicker convergence to an optimum. The

issue with this is that often such repeated updates are destructive. The main advantage

of PPO is that we can train the policy by taking minibatches of transitions from an

experience replay buffer D and perform gradient ascent over multiple epochs on this

data without destroying the policy since our updates are conservative (and the gradient

goes to 0 if the update is too large). This gives us a high amount of data efficiency;

31

we need less data to perform as well as methods like A2C (and so in a sense, PPO

performs ‘better’).

F. Deep Deterministic Policy Gradients (DDPG)

The last kind of policy gradient agent we will be interested in extends deep Q-

learning to continuous action spaces. Recall that DQNs work for discrete action

spaces only, since we use a greedy policy that selects the action with the highest

predicted Q value, and this requires outputting a predicted Q value for every possible

action. Consider a n-dimensional action space discretized into {−k, 0, k} for each

dimension. Then discretizing the action space produces 3n possible actions, which

quickly becomes intractable for high-dimensional output spaces.

We can describe an optimal action taken by the greedy policy described in 17:

a∗t (st) = arg max
at

Q∗(st, at) (63)

to extend this to continuous action spaces, we simply define a deterministic policy µ :

S → A that learns the optimal action to take. We use a neural network parametrized

by some parameters φ to predict Q∗(st, at).

max
at

Qφ(st, at) ≈ Qφ(st, µ(st)) (64)

Since Q∗(st, at) acts on a continuous action space, it is presumed to be differen-

tiable with respect to at. Then if µ is also represented by a neural network and is

parametrized by some parameters θ, we can exploit differentiability using the chain

rule and set up a gradient-based policy learning rule to optimize µθ. If we define the

objective function to be

J(θ) = E [Qφ(st, µθ(st))] (65)

Then the gradient of the objective function using the chain rule is just

∇θJ(θ) = E
[
∇µθ(st))Qφ(st, µθ(st))∇θµθ(st))

]
(66)

which we use to update the policy parameters µ in the exact same way as (34). We

interleave learning the policy with learning the Q-function, as in (24).

32

G. Kinds of Policies

There are two commonly used types of policies in reinforcement learning: categor-

ical policies and diagonal gaussian policies. We use categorical policies for discrete

action spaces, and diagonal gaussian policies for for continuous action spaces.

Consider the case with a discrete action space. We model this with a neural network

that represents a policy π where the final layer (the output) of the neural network is

a probability distribution over the possible actions. This can be achieved using, for

example, a softmax activation function:

ai 7→
eai∑
j e

aj
(67)

A softmax activation function ensures

1) Every action has a positive probability of occurring

2) The output is a probability distribution (i.e., the probabilities of each action sum

to 1).

If we refer to the last layer of the neural network (including the softmax activation)

as Pθ(s), then the log-probability of a discrete action ai is just

log πθ(a
∣∣s) = log (Pθ(s)) (68)

The next case is where we have a continuous action space. Rather than outputting

a probability distribution over possible discrete actions, we want to output the actual

action as a real-valued vector.

A multivariate gaussian distribution is defined by a mean vector µ and a covariance

matrix Σ; a diagonal gaussian distribution is a special case of multivariate gaussian

distributions where the covariance matrix only has entries along the diagonal (i.e., each

dimension of the distribution is completely independent of the other distributions).

Because of this, we can simplify representation of the covariance matrix to a vector

of standard deviations σ.

We can use this kind of distribution to stochastically select actions for our agent. The

output of our neural network will have the same dimensionality as our action space,

and will represent the mean µθ of our action distribution. The standard deviations can

33

be represented by a set of standalone parameters independent of the state, might be

standalone parameters depending on the statie (i.e., another neural network or linear

approximator), or may optionally share some layers with the neural network for µθ.

We choose actions at by selecting randomly from our distribution, using a noise

vector z taken from a spherical gaussian distribution z ∼ N (0, I):

at = µθ(st) + z � σθ(st) (dependent upon state) (69)

= µθ(st) + z � σ (independent of state)

In terms of implementation, we often have a set of parameters that learn log σ

rather than σ directly for two reasons:

1) σ is nonnegative by definition (what is a ‘negative standard deviation’?) whereas

log σ can take on any value from (−∞,∞).

2) log σ shows up in the log-probability of choosing an action at according to a

diagonal gaussian policy:

log πθ(st) = −1

2

(
k∑
i=1

(
(ai − µi)2

σ2
i

+ 2 log σi

)
+ k log(2π)

)
(70)

where k is the dimensionality of the action space.3

IV. INTRINSIC MOTIVATION

At this point, it may seem like reinforcement learning is a powerful technique ready

to take on any environment. There is one glaring problem with this assumption:

what exactly is the reward function? How does the environment confer a reward

to our agent? In many example environments used in RL research (toy problems,

video games, etc.), the reward for the environment is given at every timestep and is

frequently nonzero. This helps the agent learn because it gets feedback for almost

every action it takes and it can use this to update its parameters intelligently.

3This formula can be derived by taking the log of the probability distribution for a multivariate normal
distribution.

34

A. Sparse Rewards

The problem arises when the reward for an environment is mostly zero, except

for a few occasions where it is not. We call these kinds of rewards sparse rewards.

Consider a long sequence of actions needed to complete a task (for example, solving

a maze or completing a puzzle) where the reward is only given when the task is

completed. How does the agent learn which actions taken along the way actually

helped in reaching the goal? In the REINFORCE algorithm, all policy updates would

have a small positive return, and would reinforce every action taken along the way,

regardless of whether or not it was truly helpful.

We run into sparse rewards in real life. Consider trying to design an agent to behave

intelligently in the real world, without wanting to hand-design a reward function for

the agent. How might we encourage it to perform well? We might consider two

kinds of rewards: extrinsic reward rE , the kind of reward given to the agent by the

environment, and intrinsic reward rI the kind of reward given to the agent by the

agent itself. We call the drive for an agent to maximize its intrinsic reward intrinsic

motivation. An agent then learns a policy that maximizes both intrinsic and extrinsic

rewards.

This is similar to the notion of novelty search described in [Lehman and Stanley, 2011].

Novelty search comes from the field of Genetic Algorithms (GA), a family of com-

binatorial optimization techniques that use the variation induced by DNA replication

and mutation, and Darwinian competition, to generate increasingly better candidate

solutions. Like reinforcement learning, GAs have objective functions they want to

maximize. [Lehman and Stanley, 2011] suggests that even better performance can

be achieved by GAs not by iteratively maximizing the objective function, but by

seeking novel candidates, where novelty is measured using some metric. Surprise-

based techniques are similar to this in that the objective function is supplemented (or

replaced) by an objective function that measures novelty of visited states, and we are

seeking to maximize that objective function.

There have been many approaches to solving intrinsic motivation (For a review, see

[Burda et al., 2018]). We begin by discussing Curiosity-Driven Exploration through

35

Self-Supervised Prediction (often called the ICM approach for the Intrinsic Curiosity

Module employed by the authors). We then explain Random Network Distillation

(RND), a simple and principled approach to intrinsic motivation that will function as

our main comparison technique.

B. ICM

ICM is a technique for learning intrinsic motivation that falls under the family of

forward dynamics models or surprised-based models. These models are based on the

belief that, in the absense of regular reward, intelligent behaviour includes choosing

actions that maximize prediction errors, which encourages seeking novelty and thus

exploration.4 Specifically, we are trying to predict st+1 given st and at. Formally, we

call this a forward dynamics model, denoted F :

F : S ×A → S (71)

ŝt+1 = F (st, at) (72)

where the difference between st+1 and ŝt+1 (the prediction error) is used as the

intrinsic reward signal.

For environments with small state spaces, this kind of formulation may be reason-

able. However, there are some problems with this formulation as currently stated. For

example, consider an environment with a large state space (such as RGB images).

Predicting raw pixels would likely be futile due to the inherent complexity of most

images. Because of this, prediction error would always be relatively high, and would

not provide a reasonable reward signal. Another issue that can appear is when the

environment has stochastic elements to it, which are inherently unpredictable. These

kinds of elements would provide a high reward signal for the agent by virtue of

their unpredictability. This is called the noisy tv problem and poses a challenge for

surprise-based learning.

The authors of [Pathak et al., 2017] posit that one way to solve the noisy tv problem

is to not make predictions within the ‘raw’ state space, but rather within some smaller

4For this section, I will introduce notation that differs from [Pathak et al., 2017]. The reason for this is to avoid
duplicating notation used above in order to avoid confusion.

36

encoding space E . We define an encoding function E that maps states to encoded

states:

E : S → E (73)

et = E(st) (74)

Then we can reformulate our forward dynamics in terms of encoded states:

F : E × A → E (75)

êt+1 = F (et, at) (76)

Generally, E is of the form Rn. This choice is motivated by the fact that

1) real-valued vectors can be the output of a neural network, and

2) there is an easily computable metric for difference between real-valued vectors,

namely the square of the distance between the vectors.

The question arises then, what kind of encoding function should we use? [Pathak et al., 2017]

suggest that E should encode useful information about the state. What information

should we consider useful? In real life, humans filter out elements of their sensory in-

puts that are irrelevant, through visual and auditory selective attention [Yantis, 2009].

One way to interpret this is that we do not attend to elements of the state that cannot

affect our choice of action. Thus, our encoding should contain enough information

about the state that, given two consecutive state encodings et and et+1, we should

be able to predict the action at that was taken between them. This is exactly the

definition of an inverse dynamics model:

I : E × E → A (77)

ât = I(et, et+1) (78)

We organize three neural networks: the first, θE is a neural network representing E.

The second, θI is a neural network that that takes encoded states et and et+1 (i.e., the

output of E) and tries to predict the action taken at. The third, θF takes the encoded

state et and the action taken at and tries to predict the next encoded state et+1. This

37

is collectively referred to as the intrinsic curiosity model (ICM). This is represented

in figure 8.

Fig. 8. A schematic representing the ICM.

The loss for forward model is exactly the intrinsic reward for the agent rI :

rI = L(θF) = E
[
(êt+1 − et+1)

2
]

(79)

and the loss for the inverse model is just

L(θI) = E
[
(ât − at)2

]
(80)

Recall that, in addition to I minimizing its loss, we also want E to learn an encoding

that helps I minimize its loss. Thus, when training I via gradient descent, we let the

gradients from L(θI) ‘flow’ back into E. We can represent this using the chain rule:5

∇θEL(θI) = E
[
(ât − at)

∣∣
ât=I(et,et+1)

∇θII(et, et+1)
∣∣
et=E(st),et+1=E(st+1)

∇θE (E(st) + E(st+1))
]

(81)

and we have a slightly more simple expression for the gradient of just the inverse

5We average the gradient for the encoder considering it is used twice. The divison by 2 cancels with the
multiplication by 2 that results from taking the derivative of the squared-error loss.

38

model:

∇θIL(θI) = E
[
2(ât − at)

∣∣
ât=I(et,et+1)

∇θII(et, et+1)
∣∣
et=E(st),et+1=E(st+1)

]
(82)

For the gradient of the forward model, we do not let the gradients flow back into the

encoding model. This is because the forward model ‘evaluates’ in some sense our

encoding function:

∇θFL(θF) = E
[
2(êt+1 − et+1)

∣∣
êt+1=F (et,at)

∇θFF (et, at)
∣∣
et+1=E(st+1)

]
(83)

The authors of [Pathak et al., 2017] train a policy πθ using the reward defined by

(79). The agent is capable of learning to navigate mazes in complex 3D environments

to find a goal, where extrinsic reward is conferred only when the agent reaches that

goal (and is zero otherwise). Furthermore, adding random noise to the input still

results in robust behaviour because the encoding function learns to ignore the noise.

C. RND

[Savinov et al., 2018] describe a technique called random network distillation

(RND) that is similar to [Pathak et al., 2017] in that it uses prediction error as an

inrinsic reward signal. However, unlike the ICM, RND does not learn a forward

or inverse dynamics model. Instead, the encoding function E : S → E is just a

randomly initialized neural network called the feature network (that is, the encoding

is meaningless and serves only as a dimensionality reduction tool). Another neural

network called the predictor network parametrized by θf learns to predict the output

of E The idea is that with training, f will be a good predictor over states that are

visited frequently and will be a bad predictor over states that are visited infrequently.

The prediction error of f is used as an intrinsic reward signal for the agent.

RND reaches state-of-the-art performance on several Atari games that are con-

sidered hard exploration problems (where rewards are sparse, require long term

decision making, and also require exploration). The authors of [Savinov et al., 2018]

compared RND to a forward dynamics model by having f try to predict E(st+1)

rather than just E(st) and found that it performed better than using extrinsic rewards

39

alone, but did not compare specifically to ICM.

As in [Pathak et al., 2017], f is trained to minimize the squared error

L(θf) = E
[
(f(st)− E(st))

2] (84)

The authors of [Savinov et al., 2018] justify their choice by analyzing potential

sources of prediction errors:

1) Amount of training data: prediction error is high where few similar examples

were seen by the predictor (epistemic uncertainty).

2) Stochasticity: Prediction error is high because the encoding function is stochastic

(aleatoric uncertainty). Stochastic state transitions (such as the noisy tv problem)

can cause prediction error in forward dynamics models.

3) Model misspecification: Prediction error is high because the model class is too

limited to fit the target function.

4) Learning dynamics: Prediction error is high because the optimization process

fails to learn to target function.

RND uses 1 to encourage exploration. By choosing E to be a deterministic function

of the state, we can guarantee that 2 is not part of the prediction error (i.e., we avoid

the noisy tv problem). 3 is guaranteed to not be a problem by choosing f to be,

for example, a neural network with the same architecture as E but with a different

random initialization scheme. In practice, 4 is not a problem since gradient descent

is powerful and the encoding function is continuous and stationary.

Importantly, RND was tested with PPO as the policy learning framework, but two

value heads were used instead of one in order to allow for different learning rates

and scales for rE and rI .

We use RND as the main intrinsic reward technique to compare against. It is easy

to implement, principled, and performs better than forward dynamics models.

V. SPARSE DISTRIBUTED MEMORY

The main contribution of this thesis is to solve intrinsic reward using a mathematical

model of human memory called sparse distributed memory (SDM).

40

A. RAM

SDM is generalized version of the random-access memory (RAM) that modern

computers use to store volatile data while they are running. Numbers on computers

are represented as strings of N bits (binary digits, 1s or 0s). The number of addresses

(locations for data) for a given memory is denoted by M . A memory with M = 106

could be addressed by N = 20-bit words, since 220 = 1, 048, 576. At each address,

we store some data of size U bits, which we call the word size. The capacity of a

memory is conventionally defined to be M × U bits.

RAM comes with three registers: an address register, where we input an N -bit

address x, a word-in register, where we input a U -bit word w we wish to store at

address x, and a word-out register, where we retrieve a U -bit word z from address

x.

Writing to memory consists of providing an address x for the address register and

a word w for the word-in register. The data at address x is replaced with w. No other

addresses in memory are affected.

Reading from memory consists of providing an address x for the address register,

from which we read a word z and return this word to the data-out register. We read

from a single memory location.

We can represent RAM by

1) A: an M × N matrix of M N -bit addresses where each entry along a row is

an address in binary,

2) C: an M ×U matrix of M U -bit words where each entry along a row is a data

stored in RAM, which can be addressed by its row index, and

3) y: a binary vector of length M called the activation vector that maps addresses

in A to row indices (memory addresses) in C. It is 0 everywhere except for the

row containing the data in C addressed by a row in A.

See figure 9 for a schematic.

B. SDM

Originally, SDM was developed from the idea that the notion of distance between

concepts in our minds (we can say that two concepts are ‘similar’ or ‘dissimilar’) is

41

Fig. 9. A schematic representing the layout of RAM. Reproduced from [Kanerva, 1988] with permission.

analogous to the distances between points in high-dimensional spaces.6

This should be sufficient to emulate memory and cognition even in the simplest

kind of space. For this reason, [Kanerva, 1988] began by using a binary space,

where each dimension only contains two elements: 0 and 1. Conveniently, this kind

of space corresponds to the addresses and also data that are used in RAM. This

implies that such a model of memory could be hypothetically be implemented on

a machine. However, modern machines have RAM with N = 32 or 64-bit memory

addresses. [Kanerva, 1988] states that a high-dimensional space should have hundreds

or thousands of dimensions. This is impossible to implement as RAM in reality, since

there are around 2265 atoms in the universe, but we might be interested in having 21000

memory addresses or points in our space.

We need to select a sparse subset of these points that is representable on a machine.

6The average distance between randomly chosen points in a high-dimensional space under the euclidian metric
grows with O(

√
n) where n is the dimensionality of the space.

42

For example, consider trying to model N = 1000 dimensions with only N = 20 bits

(M = 106 hard locations, locations in hardware). Then there is a mapping from

addresses in the high-dimensional space to hard locations in memory. For simplicity,

let us assume that the addresses we wish to use and the data we wish to store are

randomly uniformly distributed, and that bits are independent of eachother. Then we

may construct such a mapping by randomly sampling M addresses from the high-

dimensional space and sending them injectively to a hard memory location.

The problem is that almost certainly no 1000-bit address sampled randomly from

our high-dimensional space is actually represented in our memory mapping. How then

should we describe reading from and writing to addresses that aren’t implemented?

In typical ram, we activate only a single location in memory for reading or writing

(y has a 1 at a single location). In SDM, given an address x to read from or write

to, we activate a set of nearby hard locations that are within a certain distance of x

(y has a 1 in multiple locations), since x is most likely not represented in A.

The notion of distance in a binary space could be euclidian distance, but we typically

use the Hamming distance, which is the number of places where two words of equal

length differ (or for points, the number of dimensions on which their values do not

match).7 Given an address x, we can construct a hypersphere of addresses around it

which are less than some Hamming distance H away from x called the Hamming

radius of activation. Addresses in this hypersphere are considered to be ‘near’ to x.

Given an address x, we can construct a vector d of distances between x and each

address Am that maps to a hard location. From d, we can construct y by setting

ym =


1 dm ≤ H

0 dm > H

(85)

See figure 10 for a schematic.

Consider storing a word w at an address x using SDM. Since we will be activating

several memory locations, we will write to all of them. However, we do not want to

overwrite the data that is stored in these locations. Some of the activated locations

7For example, the Hamming distance between 01101 and 01011 is 2

43

Fig. 10. A schematic representing the layout and function of SDM. Reproduced from [Kanerva, 1988] with
permission.

might correspond to locations activated by a much different address at some earlier

time, and we do not want to destroy that information. Instead, we want to combine

the data that we are writing with the data that is stored. In typical RAM, C is a matrix

of data where each row consists of U bits. In SDM, each row of C is instead made

up of U counters. When writing a word x to a hard memory location, each counter

is adjusted in a bitwise fashion: the counter for each bit is incemented by 1 if the bit

is a 1, or decremented by 1 if the bit is a 0. Thus, for some data stored in C, if a

counter is positive then more 1s were written to nearby addresses than 0s. Conversely,

if a counter is negative, then more 0s were written to nearby addresses than 1s. By

writing x to a set of nearby addresses, we distribute x to multiple memory locations.

To read a word from an address x, we find all nearby addresses Am. Then, for

each row in C corresponding to those addresses, we perform an vector summation,

44

producing a vector s. Finally, we can produce an output z by thresholding s around

0:

zu =


1 su ≥ 0

0 su < 0

(86)

which essentially performs an inverse of the way we distribute words when writing

to memory.

These kinds of computations (checking hamming distances, making comparisons

to thresholds, etc.) can be computationally intensive when done serially, but most

of the components of SDM can operate in parallel. This is important, since massive

parallelism is one of the important features of the human brain.

It is important to correctly choose H so that recall maximizes the signal-to-noise

ratio of the SDM, where the signal is the word we want to retrieve and the noise

is words that have previously been stored nearby. [Kanerva, 1988] demonstrates a

comprehensive derivation of the fact that, if storing T words into a memory with M

hard addresses, the optimal probability of activating any particular hard address is

given by:

p =
1

3
√

2MT
(87)

if we model generating hard addresses one bit at a time as a Bernoulli process of

N trials with equal probability of choosing a 1 or a 0, the resulting distribution is a

Bernoulli distribution with mean µ = N/2 and variance σ2 = N/4. Since N is large,

we can approximate this with a normal distribution with the same mean and variance.

If z(p) is the z score for a probability p under a normal distribution, then we can

derive an expression for H:

H = µ+ z(p)σ (88)

=
N

2
+ z

(
1

3
√

2MT

)√
N

4
(89)

For example, given a memory with M = 106 hard addresses, where addresses have

a length N = 1000, if we expect to store T = 1000 words, we get H = 450.

45

C. Autoassociative Memory

Why do we care about SDM? What nice properties does it have that can help

us solve the problem of intrinsic motivation? It turns out that there are some very

interesting uses for SDM when we use data words as address words (that is, N = U).

The first case for this is autoassociative memory. This means that, when storing

a word w, we use x = w for the address. Consider storing several noisy copies of

some pattern w into the SDM. If we read this word back from memory using x = w

for the address, then we get the output word z. We can then iteratively read from

memory using x = z to actually obtain a de-noised version of the stored patterns.

See figure 11 to help visualize this.

The second case for this is sequential memory. This means that, given some

sequence of words w1,w2, . . . ,wT , we can store this sequence in the SDM. The idea

is to use x = wi to store the word w = wi+1 (that is, use one word as the address for

the next word). Then to read back this sequence, we do the same process as denoising,

where we use the retrieved word z as the address for the next read. See figure 12 to

help visualize this.

D. Intrinsic Motivation

The disadvantage of RND is that the reward function is learned. It can take several

million timesteps for the predictor network to somewhate accurately predict the output

of the feature network, meaning that the intrinsic reward signal is very noisy. This is

evidenced by the fact that it took approximately 1.6 billion frames of experience to

achieve state-of-the-art performance on Montezuma’s Revenge.

Sparse Distributed Memory (SDM) circumvents this. Let us consider some hashing

function

Hash : S → {0, 1}N (90)

that maps states to binary vectors of length N .

Consider some binary vector w representing a hashed state. When using autoasso-

ciative memory, we use w as the address for writing and reading. Let z be the vector

read from memory when using w as an address. If we have written w to memory

46

Fig. 11. Using an SDM to store noisy version of a pattern, then iteratively reading from the memory to denoise
the stored patterns.

(or similar data) several times, then the hamming distance between w and z should

be small (close to 0). Otherwise, it should be large (close to N). Then we can define

the following intrinsic reward signal:

rIt =
dH(w, z)

N
(91)

where dH is the hamming distance and N is the size of the data words in bits. Then

we get a nicely scaled reward that is 0 when we have perfect recall and 1 when we

have completely imperfect recall.

By using the autoassociative memory feature of SDM, we can mimic the kind of

47

Fig. 12. Using an SDM to retrieve a sequence of stored patterns.

error used in RND to drive exploration8. In RND, they use the fact that frequently

visited states have lower prediction error as a reward signal. Here, we use the fact

that frequently stored words have a lower hamming distance when read back from

memory as a reward signal.

An agent can compute Hash(st) to produce a binary vector w. Then, they can read

from memory what is stored at address w to get a binary vector z. They can then

compute the intrinsic reward defined in (91).

At some point, the agent will have to write data to memory in order for the

reward signal to be meaningful. Deciding when to write to memory is called write

8We can also use the sequential memory feature of SDM to mimic the kind of forward dynamics error used in
ICM! However, this option was not explored due to resource constraints.

48

scheduling. The choice of write scheduling depends on the choice of hash function

and state dynamics.

VI. METHODS

A. Environments

One of the most popular environments for testing reinforcement learning agents

that work in high dimensional spaces is the Arcade Learning Environment (ALE).

It is an emulator for the Atari 2600, and includes implementations of several games.

The ALE environments are useful because they provide a consistent interface that

can be used by agents, since observations are always the exact same size (210×160×3)

and all action spaces are discrete. Therefore, it is easy to design a general agent that

is capable of, at the minimum, functioning in these environments.

Some ALE environments have sparse rewards. The most popular and one of the

most difficult of these is Montezuma’s Revenge, a 2D exploration and puzzle game.

Getting extrinsic rewards requires executing long sequences of moves, exploring

unknown areas, and collecting items. It is difficult because rewards are sparse (a

random agent takes a significant amount of time to find them), and identifying which

actions caused those rewards is generally hard for the agent to learn.

B. RND as a comparison

RND achieves state-of-the-art performance in Montezuma’s Revenge for a model-

free agent with no access to expert demonstrations [Savinov et al., 2018]. Because

of this, and because of the ease with which RND can be added to an existing

reinforcement learning agent, we use RND as a main comparison in this thesis.

Here we describe implementation details specific to RND that go beyond the general

description of the technique given above.

1) Policy: The authors of RND use PPO for their policy. PPO has been shown to

be largely robust to hyperparameter modifications. PPO is capable of learning both

discrete and continuous policies (and for the purposes of their paper and this thesis,

learns a discrete policy). As an actor-critic method, PPO uses two neural networks:

one to generate actions (the actor) and one to predict the value of states (the critic).

49

The authors refer to the architecture of their network as a “CNN” (or convolutional

neural network), a special type of neural network that learns low-level visual features

from input images.

The authors use GAE to calculate advantages to optimize their policy.

2) Reward Scale: While the ALE provides a consistent interface to agents, the

scales of rewards can differ from environment to environment. There are different

approaches to dealing with this:

• scaling the reward by dividing by a running estimate of the standard deviation

• whitening (normalizing) the reward by subtracting a running estimate of the mean

and dividing by a running estimate of the standard deviation

• clipping the reward within a certain range

The authors of RND chose to clip extrinsic rewards between −1 and +1. They

chose to normalize intrinsic rewards by dividing by a running estimate of the standard

deviation. Specifically, normalizing intrinsic rewards handles the fact that the reward

distribution is nonstationary. As the predictor network learns to predict the output of

the feature network, prediction error decreases. A vanishing prediction error would

eventually result in the environment having sparse rewards, defeating the purpose of

using an intrinsic reward in the first place.

3) Observation Scale: The authors do not use raw observations provided by the

environment. They modify the observations in different ways depending on whether

they are being fed into the policy or whether they are being fed into the predictor

network.

All observations are resized to be 84×84 pixels, and are averaged along the colour

channel yielding a greyscale image.

Observations that are fed into the policy (i.e., both the actor and the critic) are

scaled to be in the range [0, 1] by dividing by 255 (since all values in the observations

correspond to RGB values). Four consecutive observations are concatenated together

in order to provide temporal information to the agent (for example, knowing which

way an agent is moving). The final observation is of size 84× 84× 4.

Observations that are fed into the predictor network are whitened pixel-wise (after

50

resizing and greyscaling). This is important, since the feature network E and the

predictor network f are randomly initialized, and so normalizing observations ensures

that the scale of observations has no influence on the ability of the networks to

learn, and ensures that the information carried by the features is maximized. Some

random initial number of steps are taken to initialize normalization parameters. Unlike

the observations fed into the policy, no consecutive frames are stacked. The final

observation is of size 84× 84× 1.

4) Exploration-Exploitation: While it is not initially described in [Schulman et al., 2017],

in policy gradient methods it is common to use entropy as a means of encouraging

exploration. Since a policy π defines a probability distribution over actions (at least

in the discrete case, which we care about here), there is a measure of the uncertainty

of the agent:

H(πθ(s)) = −
∑
i

πθ(ai|s) log πθ(ai|s) (92)

which achieves a maximum where all actions are equally likely and achieves a

minimum when the probability distribution collapses around a single action.

By maximizing entropy, we can ensure that our policy does not converge to choos-

ing a single action too quickly. This prevents us from learning a policy that represents a

local maximum, which is difficult to overcome using the methods of gradient descent.

It is sufficient to add this to the loss term described in (62):

JCLIP+H(θ) = Eπθ [min (ρ(θ), clip(ρ(θ), 1− ε, 1 + ε))Aπθ(s, a) + βH(πθ(s))] (93)

where H(πθ(s)) is the entropy of the policy πθ over discrete actions, and β is a

parameter that controls the relative importance of the entropy.

The authors of RND use β = 0.001.

5) Combining Episodic and Non-Episodic Rewards: The authors of RND make an

interesting observation: the intrinsic rewards that the agent sees should not be treated

episodically (i.e., the time horizon T used for calculating returns should not terminate

at the end of an episode). They use the following thought experiment: consider an

agent that wants to explore a difficult-to-reach room. If the agent fails, then it dies

and the episode ends. Then the cost for that agent of reaching the room should be

51

the cost of playing through an episode to reach that room again, rather than the cost

of missed extrinsic rewards. Thus, intrinsic rewards should persist beyond episodes.

This poses a problem, because our critic is only capable of predicting the value of a

state V πθ(st) based on the discounted return Gt, and the discounted return calculation

depends on the time horizon. The solution the authors have is to use a critic with two

value heads: one for predicting intrinsic (non-episodic) returns and one for predicting

extrinsic (episodic) returns. This way, different time horizons can be used for each

value head.

The use of two value heads also allows for extrinsic and intrinsic advantage calcula-

tions. The advantage of this is that we can compute an overall advantage to optimize

the policy using PPO, where the overall advantage is a linear combination of the

extrinsic and intrinsic advantages:

A = cIAI + cEAE (94)

where AI is the intrinsic advantage and AE is the extrinsic advantage, and cI and cE

are parameters controlling their relative importance. The authors of RND use cE = 2

and cI = 1.

6) Batched Environments: When using a complex neural network as the policy (and

as a value function estimator), the amount of time spent evaluating the policy can be

orders of magnitude higher than the amount of time spent stepping the environment.

The difference in cost between outputting a single value in the final layer of a neural

network and outputting multiple values in the final layer of a neural network is

relatively insignificant. Knowing this, and assuming that environments take less time

to simulate than policy evaluation, we can use batched environments to accelerate

the collection of data for training.

When using batched environments (also sometimes called vectorized environ-

ments), we replace a single environment with a set of environments. Our policy,

given a vector of observations ~st, generates a vector of actions ~at corresponding to

the action to be taken in each environment. In return, each environment collectively

returns the next observation, together forming a vector ~st+1, and a vector of rewards ~rt.

52

This way, the agent can use the same policy to collect data from multiple environments

‘in parallel’ (though often this means conceptually in parallel, not true parallelism).

The authors of RND note the importance of parallelism and scalability in rein-

forcement learning, citing its role in the success of modern methods. They also use

parallelism as a motivating factor in their design, and criticise the scalability of other

intrinsic motivation methods.

C. Sparse Distributed Memory

RND was implemented as described by the authors. The advantage of this is that

we can do a fair comparison between using RND and SDM by simply replacing the

RND calculation of intrinsic reward with that defined in (91).

Furthermore, the authors of RND already spent the computational resources on

determining which policies and hyperparameters worked best with intrinsic motivation

on Montezuma’s Revenge. Instead of performing a grid search or randomly sampling

hyperparameters from a large search space, we use those found to be optimal by the

authors. For a full description of all hyperparameters, see appendix A.

For a hashing function, we use a neural network with the same architecture as

the feature network used in RND. If o is the output of the neural network used for

hashing, then we can define the following hash:

Hash(st)i =


1 oi ≥ ō

0 oi < ō

(95)

which essentially thresholds the output layer around the mean of the output. Figure

13 visualizes this hash function for a single environment. Each row of pixels corre-

sponds to the binary vector encoded by the above hash function. Consecutive rows

correspond to consecutive timesteps that the agent takes. We can see that the hashes

for consecutive timesteps are similar, but not exactly the same, resulting in a noisy

vertical banding pattern.

We use the neural network to produce hashes for multiple batched environments,

just as RND uses the neural network to produce feature predictions for multiple

batched environments.

53

Fig. 13. Hashes for Montezuma’s Revenge. Rows correspond to 512 bits computed for the hash. Columns are
timesteps. Used M = 100000, N = 512, U = 512, T = 1000000 as parameters for the memory.

The write schedule is quite simple. For a single environment, we could write every

timestep, since the hashes are sufficiently different. However, by scaling up the number

of environments using batching, we accelerate the rate at which the memory becomes

saturated. Thus, we modify the write schedule to write with probability 1/B where

B is the number of batched environments. This keeps the rate of writing constant,

and is equivalent to the strategy that [Savinov et al., 2018] uses to decrease the rate

of distillation of the predictor network.

Figure 14 is a visualization of this write schedule for a single environment. At each

timestep, we compute the hash w for the current state, check memory to retrieve a

54

binary vector z, and then take their bitwise difference w ⊕ z.

In figure 14, each row of pixels represents w⊕ z. In Montezuma’s Revenge, each

episode corresponds to using up five lives. The dark bands correspond to timesteps

when the agent has fallen to its death, temporarily squirming about on the ground

before being reset. During these timesteps, the environment changes very little, and

as a result, the agent stores similar information repeatedly in similar addresses. This

solidifies the agent’s memory of this location, and makes these states less rewarding

as a result. It is a happy accident that intrinsic reward decreases upon death, quickly

training the agent to avoid dying. Over time, the agent’s memory becomes saturated

with common hashes, and the differences between computed and retrieved hashes

decreases, decreasing the reward of being in thoses states.

1) SDM Hyperparameters: There are five hyperparameters available when using

SDM:

• M : The memory size.

• N : The size of address words.

• U : The size of data words. Because we use autoassociative memory, we must

have N = U .

• T : The expected number of words to be written.

• H: The Hamming radius of activation.

Just as RND used 512 features for their embedding, I use 512 bits for my data

word size.

I use the optimal H computed in (88) under the assumption that my hash function

produces sufficiently random bitstrings. Since inputs to the hash network are normal-

ized, and since the weights of the network are randomly initialized, this assumption

is fair.

The authors of RND used a total of 30, 720, 000 training examples to distill their

predictor network into a trained one 9. Since our write schedule is analogous to their

schedule for training their predictor network, we use T = 30, 720, 000 as our number

of expected binary vectors.

930,000 environment rollouts using 32 parallel environments for 128 timesteps, using 1/4 of the gathered
experience.

55

Fig. 14. Bitwise differences between computed hashes and retrieved hashes. Used M = 100000, N = 512, U =
512, T = 1000000 as parameters for the memory.

We vary the number of addresses M , testing performance with M = 105,M = 106

and M = 107.

The pseudocode for the algorithm is presented in algorithm VI-C1

VII. RESULTS

The authors of RND already establish that RND exceeds the performance of forward

dynamics models like ICM, and consistently surpasses PPO as a baseline with no

intrinsic reward. Thus, here we compare only PPO, RND, and SDM.

56

Algorithm 1 Training SDM Agent
N ← number of rollouts
Nopt ← number of optimization epochs
K ← length of rollout
t = 0
sample s0 from d(s)
for i = 1 to N do:

for j = 1 to K do:
sample at ∼ πθ(st)
sample st+1, r

E
t from P ,R

normalize state st ← st−µ
σ

compute w = Hash(st)
compute intrinsic reward rIt
normalize intrinsic reward
store st, at, rEt , r

I
t to optimization batch Bi

t = t+ 1
compute AE and AI for batch Bi using GAE
compute total advantage A = cEAE + cIAI
for j = 1 to Nopt do:

optimize policy using PPO

A. Reporting Results

1) Performance: Several kinds of reporting metrics for policy performance have

become popular in reinforcement learning:

• The average score obtained by running the policy in an environment for a fixed

number of timesteps, often 18,00 frames which at 60 frames per second for

the Atari 2600 environments corresponds to 5 minutes of real-time gameplay

[Bellemare et al., 2012]

• The improvement in score of the policy over a random agent compared to the

improvement in score of a human player ofer a random agent, computed as

100 ∗ policy score− random agent score
human score− random agent score

(96)

[Mnih et al., 2013]

• Mean and median performance normalized with respect to some well-performing

baseline [van Hasselt et al., 2015]

I choose to use the following metrics:

• Mean reward obtained by the agent over 18,000 frames, over 5 random seeds.

57

This allows for comparing to published results.

• Normalized score with respect to a random baseline. For some environments,

a random agent can perform surprisingly well. This allows us to analyze the

inductive bias of using reinforcement learning in this environment.

• Normalized score with respect to PPO. This allows us to analyze the inductive

bias of using an intrinsic reward over relying purely on extrinsic reward.

• Normalized score with respect to RND. This allows us to analyze the inductive

bias of using a different, faster-convering intrinsic reward signal than the current

state-of-the-art.

2) Training Curves: While final performance of reinforcement learning agents is

ultimately how we measure ‘performance’, many existing techniques can peform better

if run with a massive number of parallel environments for extremely long periods of

time. Thus, we are also interested in the learning dynamics of an agent: how quickly

performance increases, and how long it takes behaviour to converge. Part of the

motivation for using SDM over RND is that the intrinsic reward signal is useful much

more quickly than in RND, which should decrease the number of training samples

required to learn good behaviour.

The authors of RND plot the mean cumulative unclipped extrinsic rewards expe-

rienced by the agent per episode as a function of the number of parameter updates.

This is a simple way to evaluate performance, and allows us to ensure the correctness

of our implementation.

These training curves are often plotted as the average over all parallel workers, with

shaded regions representing the standard deviation in performance. Because training in

reinforcement learning is not always highly stable, the performance is often smoothed

by taking the mean across a window of a fixed number of timesteps. The authors of

RND do not disclose the size of their smoothing window used in plotting, but we use

10 here.

B. Varying SDM Parameters

Due to the success of RND, we took the best-performing hyperparameters from

RND and used them when applying SDM. This was partially done due to compu-

58

tational constraints; large-scale reinforcement learning research often uses clusters

of GPU-accelerated machines, which were not available for this thesis. Resource

limitations prohibited the use of a grid search on the wide variety of hyperparameters

available, but also ensured a fair comparison between algorithms. Furthermore, as

a general principle of reinforcement learning research, a method should be highly

robust to hyperparameter changes.

Consequently, the only hyperparameter that was modified was the size of the

memory M . Table A shows the results of a trained agent after 480, 000 parameter

updates10.

M Cumulative Reward RND-Normalized PPO-Normalized Random-Normalized
105 3607± 651 45.82% 141.45% 13035%
106 3553± 428 45.15% 139.33% 17765%
107 4251± 399 54.01% 166.71% 21255%

RND 7871± 676
PPO 2550± 0

Random 20± 40
TABLE I

PERFORMANCE OF SDM WITH RESPECT TO MEMORY SIZE.

Mean cumulative extrinsic reward in Montezuma’s Revenge over 18, 000 frames of experience at 60
fps (about 5 minutes of real-time gamplay). Performance measured after 480, 000 parameter updates,

except for random agent. 5 rollouts were used for testing, each with a random period of 0 to 100
frames where the agent did not perform any actions.

The most important result from this experiment is that SDM is capable of im-

proving performance over a competitive baseline reinforcement learning algorithm

by supplementing extrinsic rewards with intrinsic rewards. Applying SDM with any

memory size performs significantly better than PPO11.

Unfortunately, using SDM does not achieve state-of-the-art performance. Our agent

is capable of playing Montezuma’s Revenge at approximately an amateur human’s

level of play [Savinov et al., 2018].

Compared to a random agent, which only found a single extrinsic reward of 100

across 5 random seeds, all agents perform extremely well. This comparison is not

1030, 000 rollouts, each with 4 minibatches, updated for 4 optimization epochs
11The PPO agent found the exact same sequence of rewards over all 18, 000 timesteps on all 5 runs, resulting

in a standard deviation of zero. Significance testing is not exactly meaningful here.

59

meant to show relative improvement, but rather to demonstrate the extreme sparseness

of extrinsic rewards. In some environments, random agents can perform almost as well

as (or even better than) reinforcement learning algorithms [Savinov et al., 2018].

Increasing memory size from 105 to 106 did not change performance significantly.

Further increasing memory size to 107 improved performance somewhat, though this

difference is not statistically significant (t = 1.88, p = 0.09).

We visualize the training process in figure 15. The training curves for PPO and

for RND look similar, but not exactly the same as [Savinov et al., 2018], confirming

the correctness of its implementation. The random agent generally fails to find any

positive reward, and when it does, averaging across environments causes these rewards

to be diminished.

All agents initially begin to learn quickly and at similar rates, with M = 107 SDM

being competitive with RND up until approximately 250, 000 parameter updates. By

viewing the RND agent, we found that this increase in extrinsic reward occurred

when the agent learned to access a room that had further easy access to adjacent

rooms. The SDM agents did not find this room. Because of computational resources,

these training curves represent a single run of training agents. As a result, it cannot

be certain if RND’s choice to move to this new room happened randomly, or would

have happened consistently across runs.

While PPO initially learns quickly, once it learns to acquire all of the extrinsic

rewards that it can easily find, it exploits finding these rewards and has great difficulty

stumbling into further rewards. Both RND and SDM surpass PPO in performance

relatively early on.

VIII. DISCUSSION

A. Limitations

Before undertaking this thesis, I had some understanding of how reinforcement

learning worked, and had some experience using neural networks in the context of

supervised learning. However, I did not fully understand the resource requirements

for research-level reinforcement learning.

60

Fig. 15. Mean cumulative extrinsic reward over training episodes (18,000 steps or when the agent uses up
five lives, whichever happens first). Averaged over 32 parallel environments. Shaded region represents standard
deviation. X axis is parameter updates.

The first resource that was limited was computational resources. Groups that are

ubiquitous in the reinforcement learning literature have access to large clusters of

GPU-accelerated machines, which allow for rapid protototyping of agents. Further-

more, they allows for parallel data collection and parallel hyperparameter testing. The

data collected in this thesis used a single laptop with a two-core CPU and no GPU,

which slowed development considerably.

Furthermore, for problems with complex state-spaces, like Montezuma’s Revenge, it

can take millions or billions of timesteps of experience for an agent to show learning.

As a result, debugging programs often required a significant amount of patience to

tell if the agent was learning or not. This, coupled with the deadline for this thesis,

limited the amount of experiments and testing that was feasible. It also limited the

ability to run long-running experiments over several random seeds, since each would

61

take up to several days to complete.

The limitations on resources leads to a degree of uncertainty in the results, since

only a single random seed for policy initialization was used for each algorithm.

Furthermore, the agents that were trained over a single run were then used to evaluate

the learned policy. Thus, it is possible that over a larger number of random seeds,

results could have varied. Because the final performance of the RND agent matched

published results, I am at least partially confident that the RND is performing as well

as expected. However, it is possible that with additionaly hyperparameter tuning and

network architecture choices, among other things, that SDM could outpeform RND.

B. Reasons for Performance

SDM performs better than PPO but worse than RND. Originally, I theorized that

RND’s slow convergence as a reward signal meant that it took a significant amount

of time to generate good performance. I believed that the more instantaneous nature

of the reward signal from SDM would be beneficial to the agent, very quickly telling

it whether it was in a novel state or not.

Recall the the agent uses the advantage of choosing certain actions in certain states

to decide whether or not those actions are good. For both RND and SDM, the agent’s

actions should incur a negative intrinsic advantage when visiting common states, such

as the starting position of the agent, to which the agent is set at the beginning of every

episode and after losing a life. The reward for being in this state consistently decreases

over time, as it becomes more and more familiar to the agent. However, the rate at

which states become familiar to the agent is important for exploration. For RND, the

slow rate of convergence of the reward signal is actually beneficial; each time the

agent begins an episode, the difference in prediction error is only slightly smaller

than before, making that state only slightly less novel to the agent, thus not incurring

a large negative advantage. When using SDM however, the agent learns in only a few

episodes that the starting state is not novel, and quickly begins to confer 0 intrinsic

reward as perfect recall of hashes is achieved. As a result, SDM intrinsic rewards

become sparse relatively quickly compared to RND, whose reward signal changes

more slowly. As the returned rewards decrease, the agent experiences a negative

62

advantage, discouraging whatever actions were taken at the start of an episode. This

process repeated over time leads to an agent that chooses random actions in common

states, since all actions are equally bad. Once intrinsic rewards stabilize to zero this

effect goes away. Because intrinsic rewards dissipate like this, any actions taken in

common states have no influence on the overall return or advantage for a rollout,

and the agent only learns which actions are good based on their eventual outcome.

However, since rollouts are only of length 128 for a single environment, this requires

that an agent find some intrinsic reward within 128 timesteps, which can sometimes

be difficult since many of the states encountered at the start of an episode or after

respawning from a death are going to be very common to the agent. The resulting

reward signal after acquiring experience is one that is slightly sparse; not as sparse

or as difficult to achieve as the true extrinsic reward, but not as a dense as that of

RND.

When examining the average intrinsic reward recieved by SDM agents over time,

the intrinsic reward signal evaporates entirely to zero at around 300, 000 timesteps.

After this point, the agent is essentially learning using only PPO, since it is operating

entirely based on extrinsic rewards. However, having gained enough experience to

learn how to get easier rewards from earlier in the game using SDM, the agent still

manages to outperform PPO.

There seems to be an improvement in performance when increasing the memory

size. It is not exactly clear what the relationship is between memory size and perfor-

mance. Recall that addresses are sampled randomly from our address space of {0, 1}N

under the assumption that the data to be stored is random. We compute our Hamming

radius of activation based the number of addresses and the optimal probability of

activating a random address, but changing M does not significantly alter the radius

of activation. For M = 105 we get H = 212, for M = 106 we get H = 210

and for M = 105 we get H = 208. For each memory size, the intrinsic reward

tends to dissipate at around the same time. As such, it is likely that the difference in

performance is simply due to random seed, with the agent stumbling into extrinsic

rewards randomly.

63

C. Future Work

Beyond using additional resources to test out basic hyperparameters and network

architectures, there are some directions for future work that may be beneficial.

While RND has been shown to outperform dynamics-based methods [Savinov et al., 2018],

this class of methods still has merit for intrinsic reward. For example, the authors of

RND did not test RND in a visually complex 3D environment, and did not implement

their forward dynamics model exactly as described in referenced papers. Thus, there is

the possibility that SDM can work well in other environments. It is possible to easily

extend SDM to use forward dynamics error using the sequential memory property of

SDM. By comparing the recalled hash for the next state with the evaluated hash for

the next state, using the hash for the current state as the address, we can generate a

kind of prediction error common to all dynamics-based models of intrinsic reward.

Additionally, it would be interesting to measure the influence of using a write

schedule that only writes hashes to memory if a state is considered sufficiently novel.

This would attenuate the rate of memorization that the agent undergoes, rather than

continually writing states to memory at every time step.

While we focused on using PPO and policy gradient methods here, it would be

interesting to know if one can extend the notion of two value heads for the critic

in PPO to two value heads for the Q-network in deep Q-learning. Currently, even

the most advanced DQNs fail to obtain significant rewards in Montezuma’s Revenge

[Hessel et al., 2017].

PPO can be used with continuous action spaces using diagonal gaussian distribu-

tions. DDPG is built specifically for continuous action spaces. It could be beneficial

to see if either RND or SDM can achieve good performance in sparse reward envi-

ronments with continuous action spaces.

Montezuma’s Revenge, despite having a large observation space, does not have a

highly complex observation space. It is possible that a complex 3D environment would

be too difficult for RND to learn, with inputs varying too much for the predictor

network to learn. In this case, the rapid convergence of SDM may actually benefit

the agent more than RND.

64

IX. NEUROSCIENCE

Reinforcement learning has its roots in operant conditioning, a form of behaviour

modification that involves modifying rewards for certain actions. While reinforcement

learning and neuroscience are, at their core, different disciplines, some overlap has

been found that allows us to better understand why animals learn and behave the way

they do [Niv, 2009].

Neuroscientists interest in reinforcement learning have found dopamine to be ex-

tremely important in reward signalling pathways. Since reinforcement learning deals

with learning policies that maximize rewards, understanding dopamine signalling

and its impacts on our behaviour is the key to relating reinforcement learning to

neuroscience.

In a simple Pavlovian learning paradigm, animals learn an association between

an neutral stimulus (any kind of neutral stimulus such as ringing a bell), and an

unconditioned stimulus (a stimulus that naturally induces a reward, such as food).

The animal learns to predict the unconditioned stimulus using the neutral stimulus

as a cue. Once this association is formed, the neutral stimulus acts as a conditioned

stimulus.

By measuring the activity of dopaminergic neurons in the brain, we can learn what

kind of stimulus the animals find rewarding. During Pavlovian learning, we see an

interesting pattern in the behaviour of these neurons. Consider a paradigm where the

animals is presented with a tone, and a few moments later presented with food. During

training, the animals learns that the tone precedes the food, and learns to reach for

the food in advance of its presentation. What we find is that, at the beginning of

training, the animal’s dopaminergic neurons increase in activity when they are given

the food. At the end of training, that spike in dopaminergic neuron activity shifts to

occur when the tone is played; the animal learns that the cue precedes food and so

the cue becomes the signal for a reward. Finally, when presented with a tone but no

food follows, the dopaminergic neuron activity decreases around the time when food

is expected to appear [Niv, 2009].

The activity of these dopaminergic neurons corresponds nicely with an early method

65

Fig. 16. Temporal-difference learning in a pavlovian learning task [Niv, 2009].

in reinforcement learning called temporal-difference learning or TD-learning. It is

extremely similar to the SARSA method described above, except that it learns a value

function V (st) rather than a Q-function Q(st, at). The agent learns the value function

iteratively in a tabular setting by following (16)

V (st)← V (st) + αδt (97)

where we have

δt = rt + γV (st+1)− V (st)

Let us treat the problem as a two-step MDP with two states sCS and sUS corre-

sponding to the conditioned stimulus and unconditioned stimulus. Initially, the animal

assumes V (s) = 0 everywhere. When the animal transitions from sCS to sUS, they

experience a reward. Then the animal experiences a reward prediction error δt > 0.

66

This corresponds to figures 16a and 16d. As the animal learns to predict the reward in

state sCS, the value associated with that state V (sCS) increases, and δt drops to zero.

This corresponds to figures 16b and 16e. Finally, when presented with the conditioned

stimulus but no unconditioned stimulus follows, there is a negative prediction error

in reward δt < 0 for the state sUS.This corresponds to figures 16c and 16f.

The link between phasic dopaminergic neuron activity and reinforcement learning

goes beyond the relationship between a simple Pavlovian task and TD-learning. For

example, it has been shown that the contributon of past rewards to current experience

is an exponentially weighted average, as is implied by the discount factor γ in (97).

Moreover, in experimental paradigms where rewards have different probabilities, the

predicted learned reward (in terms of the rate of dopaminergic neuron firing) is

proportional to those probabilities. Finally, research has shown that delayed rewards

show an attenuation in corresponding dopaminergic neuron firing such that rewards

with longer delays are attenuated more, which we would expect if the value is the sum

of the discounted rewards (γiri < γjrj for i > j). The close correspondence between

phasic dopaminergic neuron firing patterns and the characteristics of TD-learning

led to the suggestion of the reward prediction error hypothesis of dopamine

[Niv, 2009].

This theory posits that the regions of the brain that have afferents to dopamin-

ergic neurons (such as the medial prefrontal cortex (mood), the nucleus accumbens

(pleasure), the amygdala (fear), and the hypothalamus (needs)) contain information

about how rewarding the current state is. The dopamine signal provided by these

neurons to their targets (mostly the basal ganglia, which is involved with learning

behaviour patterns, habits, and motor planning) provides an appropriate indicator of

the goodness of certain behavioural policies. Together, these two systems form a kind

of actor-critic that learns to modify behaviour to maximize reward [Niv, 2009].

The brain is complex and we are far from understanding the deep computational

mechanisms that allow for generalizability of behaviour and the transfer of learning.

While this is an ongoing area of research, there is much that reinforcement learning

researchers can learn from neuroscientists.

67

X. CONCLUSION

Reinforcement learning is a fascinating field that has come very far in recent years.

Reinforcement learning does especially well in environments with dense rewards, but

struggles when rewards are sparse. This thesis considers some possible solutions to the

sparse reward problem, focusing on random network distillation, and a novel proposed

algorithm that leverages sparse distributed memory to measure novelty. We find that

using sparse distributed memory can improve the performance of an agent that relies

only on sparse extrinsic rewards. While this approach does not exceed state-of-the-art

performance, it validates the use of SDM as a tool for measuring novelty and guiding

exploration. Using SDM is a promising approach with a rich set of directions for

future study.

68

REFERENCES

[Bellemare et al., 2012] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2012). The arcade learning

environment: An evaluation platform for general agents.

[Burda et al., 2018] Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., and Efros, A. A. (2018). Large-

scale study of curiosity-driven learning.

[Hessel et al., 2017] Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D.,

Piot, B., Azar, M., and Silver, D. (2017). Rainbow: Combining improvements in deep reinforcement learning.

[Kanerva, 1988] Kanerva, P. (1988). Sparse Distributed Memory. The MIT Press.

[Lehman and Stanley, 2011] Lehman, J. and Stanley, K. (2011). Abandoning objectives: evolution through the

search for novelty alone.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. (2013). Playing atari with deep reinforcement learning.

[Niv, 2009] Niv, Y. (2009). Reinforcement Learning in the Brain.

[Pathak et al., 2017] Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven exploration

by self-supervised prediction.

[Savinov et al., 2018] Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Pollefeys, M., Lillicrap, T., and Gelly,

S. (2018). Episodic curiosity through reachability.

[Schulman et al., 2015] Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2015). High-dimensional

continuous control using generalized advantage estimation.

[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal

policy optimization algorithms.

[Sutton,] Sutton, R. The reward hypothesis.

[Thorndike, 1901] Thorndike, E. (1901). Animal intelligence: An experimental study of the associative processes

in animals. Psychological Review Monograph Supplement, 2:1–109.

[van Hasselt et al., 2015] van Hasselt, H., Guez, A., and Silver, D. (2015). Deep reinforcement learning with

double q-learning.

[Yantis, 2009] Yantis, S. (2009). The neural basis of selective attention cortical sources and targets of attentional

modulation. Current Directions in Psychological Science, 17:86–90.

APPENDIX A

HYPERPARAMETERS

Training
Rollouts (N) 30, 000

Optimization Epochs (Nopt) 4
Rollout Length (K) 128

Number of minibatches 4

PPO
Learning Rate 0.0003

Entropy Coefficient (β) 0.001
Optimizer Adam

Extrinsic Advantage Coefficient (cE) 2
Intrinsic Advantage Coefficient (cI) 1

γI 0.99
γE 0.999
λ 0.95

Clip range (ε) 0.1
RND

Number of features 512
Proportion of experience used for training 1/4

SDM
Memory Size (M) {105, 106, 107}

Expected number of data (T) 30, 720, 000
Word Length (N = U) 512

70

